设为首页  |  加入收藏  |  联系我们  |  English  |  中国科学院  
 首  页  实验室概况 研究队伍 科研工作 平台建设 开放交流 人才培养 规章制度
 
  当前位置:首页 > 最新论文  
Yanting Shen,Zhengkui Zhou et al., Global Dissection of Alternative Splicing in Paleopolyploid Soybean. The Plant Cell. DOI:10.1105/tpc.114.122739
时间:2014-03-31 来源: 点击:
Global Dissection of Alternative Splicing in Paleopolyploid Soybean

Yanting Shen,Zhengkui Zhou,Zheng Wang,Weiyu Li,Chao Fang,Mian Wu,Yanming Ma,Tengfei Liu,Ling-An Kong,De-Liang Peng and Zhixi Tian


The Plant Cell
DOI:10.1105/tpc.114.122739

Abstract

Alternative splicing (AS) is common in higher eukaryotes and plays an important role in gene posttranscriptional regulation. It has been suggested that AS varies dramatically among species, tissues, and duplicated gene families of different sizes. However, the genomic forces that govern AS variation remain poorly understood. Here, through genome-wide identification of AS events in the soybean (Glycine max) genome using high-throughput RNA sequencing of 28 samples from different developmental stages, we found that more than 63% of multiexonic genes underwent AS. More AS events occurred in the younger developmental stages than in the older developmental stages for the same type of tissue, and the four main AS types, exon skipping, intron retention, alternative donor sites, and alternative acceptor sites, exhibited different characteristics. Global computational analysis demonstrated that the variations of AS frequency and AS types were significantly correlated with the changes of gene features and gene transcriptional level. Further investigation suggested that the decrease of AS within the genome-wide duplicated genes were due to the diminution of intron length, exon number, and transcriptional level. Altogether, our study revealed that a large number of genes were alternatively spliced in the soybean genome and that variations in gene structure and transcriptional level may play important roles in regulating AS.


 
【打印本页】【关闭本页】
Copyright © 植物细胞与染色体工程国家重点实验室(中国科学院遗传与发育生物学研究所)
地址:北京市朝阳区北辰西路1号院2号 邮编:100101 电话: 010-64806537 传真: 010-64806537