设为首页  |  加入收藏  |  联系我们  |  English  |  中国科学院  
 首  页  实验室概况 研究队伍 科研工作 平台建设 开放交流 人才培养 规章制度
 
  当前位置:首页 > 最新论文  
Structural insight into the cooperation of chloroplast chaperonin subunits
时间:2016-07-29 来源: 点击:

Structural insight into the cooperation of chloroplast chaperonin subunits 

 

 

Shijia Zhang,Huan Zhou,Feng Yu,Cuicui Bai,Qian Zhao,Jianhua He and Cuimin Liu

 

 

BMC Biology 

DOI:10.1186/s12915-016-0251-8 

 

 

 

Abstract 

 

Background: Chloroplast chaperonin, consisting of multiple subunits, mediates folding of the highly abundant protein Rubisco with the assistance of co-chaperonins. ATP hydrolysis drives the chaperonin allosteric cycle to assist substrate folding and promotes disassembly of chloroplast chaperonin. The ways in which the subunits cooperate during this cycle remain unclear.
Results: Here, we report the first crystal structure of Chlamydomonas chloroplast chaperonin homo-oligomer (CPN60β1) at 3.8 Å, which shares structural topology with typical type I chaperonins but with looser compaction, and possesses a larger central cavity, less contact sites and an enlarged ATP binding pocket compared to GroEL. The overall structure of Cpn60 resembles the GroEL allosteric intermediate state. Moreover, two amino acid (aa) residues (G153, G154) conserved among Cpn60s are involved in ATPase activity regulated by co-chaperonins. Domain swapping analysis revealed that the monomeric state of CPN60 α is controlled by its equatorial domain. Furthermore, the C-terminal segment (aa 484–547) of CPN60β influenced oligomer disassembly and allosteric rearrangement driven by ATP hydrolysis. The entire equatorial domain and at least one part of the intermediate domain from CPN60α are indispensable for functional cooperation with CPN60β1, and this functional cooperation is strictly dependent on a conserved aa residue (E461) in the CPN60 α subunit.
Conclusions: The first crystal structure of Chlamydomonas chloroplast chaperonin homo-oligomer (CPN60β1) is reported. The equatorial domain maintained the monomeric state of CPN60 α and the C-terminus of CPN60 β affected oligomer disassembly driven by ATP. The cooperative roles of CPN60 subunits were also established.

 

 

 

 
【打印本页】【关闭本页】
Copyright © 植物细胞与染色体工程国家重点实验室(中国科学院遗传与发育生物学研究所)
地址:北京市朝阳区北辰西路1号院2号 邮编:100101 电话: 010-64806537 传真: 010-64806537