设为首页  |  加入收藏  |  联系我们  |  English  |  中国科学院  
 首  页  实验室概况 研究队伍 科研工作 平台建设 开放交流 人才培养 规章制度
 
  当前位置:首页 > 最新论文  
Simultaneous Modification of Three Homoeologs of TaEDR1 by Genome Editing Enhances Powdery Mildew Resistance in Wheat. Plant Journal. DOI: 10.1111/tpj.13599
时间:2017-09-15 来源: 点击:
Simultaneous Modification of Three Homoeologs of TaEDR1 by Genome Editing Enhances Powdery Mildew Resistance in Wheat

Yunwei Zhang, Yang Bai, Guangheng Wu, Shenghao Zou, Yongfang Chen, Caixia Gao, Dingzhong Tang


Plant Journal
DOI:10.1111/tpj.13599


Abstract

 

Wheat (Triticum aestivum L.) incurs significant yield losses from powdery mildew, a major fungal disease caused by Blumeria graminis f. sp. tritici, (Bgt). ENHANCED DISEASE RESISTANCE1 (EDR1) plays a negative role in the defense response against powdery mildew in Arabidopsis thaliana; however, the edr1 mutant does not show constitutively activated defense responses. This makes EDR1 an ideal target for approaches using new genome-editing tools to improve powdery mildew resistance. We cloned TaEDR1 from hexaploid wheat and found high similarity among the three homoeologs of EDR1. Knock-down of TaEDR1 by virus-induced gene silencing (VIGS) or RNA interference (RNAi) enhanced resistance to powdery mildew, indicating that TaEDR1 negatively regulates powdery mildew resistance in wheat. We used CRISPR/Cas9 technology to generate Taedr1 wheat plants by simultaneous modification of the three homoeologs of wheat EDR1. No off-target mutations were detected in the Taedr1 mutant plants. The Taedr1 plants were resistant to powdery mildew and did not show mildew-induced cell death. Our study represents the successful generation of a potentially valuable trait using genome-editing technology in wheat and provides germplasm for disease resistance breeding.
 
【打印本页】【关闭本页】
Copyright © 植物细胞与染色体工程国家重点实验室(中国科学院遗传与发育生物学研究所)
地址:北京市朝阳区北辰西路1号院2号 邮编:100101 电话: 010-64806537 传真: 010-64806537